Rheology Principles and Applications

Mark Patrick Ph.D. Owner Rheology Testing Services

www.rheologytestingservices.com

	 			ı
OVERVIEW	ROTATIONAL ASSAYS	OSCILLATORY ASSAYS	<u>VERTICAL ASSAYS</u>	OTHER
Applications	Basic Principles	Basic Principles	Squeeze-Pull Away (stickiness)	General Experimental Considerations
• Rheometer Mechanics	Shear Stress RampShear Rate Ramp	Amplitude SweepFrequency Sweep	Model Chewing Surface Tangian	• Plate & Cone Considerations
• Q3 for IP & Regulatory	ThixotropyTime Sweep	• <u>Time Sweep</u> (stability)	Surface Tension	Optimizing Dispersion, Colloidal & Emulsion Stability
	(stability)Temperature Sweep (stability, melting)	Temperature Sweep (stability, melting)		Literature Example: Influence of Processing Variables on Rheological & Textural Properties of Lupin Protein-Stabilized Emulsions
	 Creep-Recovery Tribology (friction) 			• <u>Conclusions</u>

Rheology Applications - R&D to Manufacturing

Rheology Applications - R&D to Manufacturing (CON'T)

- Product development, optimization & in-process control (Quality by Design (QbD))
 - batch consistency
 - addition order & rate
 - mixing time & speed
 - temperature (heating/cooling range & rate)
 - bulk transfer (shear thinning, rebuilding)
 - equipment type & size (scale-up, pumps, pipes)
 - transport (sedimentation, phase separation)
 - stability

Regulatory & Intellectual Property (IP)

Confirm Product (Dis)Similarity to RLD (Reference Listed Drug) for ANDA

Q1: **Qualitative** ⇒Same components

Q2: **Quantitative** \Rightarrow Q1 & same amount

Q3*: Microstructure

- ⇒ Q1 + Q2 + same arrangement of matter
- ⇒ Performance, efficacy, stability, batch-to-batch consistency
- Concentration

 Concentration

 Concentration

 Concentration

 Concentration

 Concentration

 Rodlike

 Rodlike

 Wormlike

 Wormlike

 Wormlike

Surfactant

- → Rheometer may discern among arrangements based on association (entanglements) and their relaxation time
- → Rheological properties may affect biological activity
 - Fulfilling the FDA's Rheology Testing Requirements for Abbreviated New Drug Applications (ANDA) for Topical Creams Netzsch (https://analyzing-testing.netzsch.com/en-US/application-literature/fulfulling-the-fdas-rheology-testing-requirements-for-abbreviated-new-drug-applications-anda-for-topical-creams)
 - * "Draft Guideline on Quality and Equivalence of Topical Products" European Medicines Agency (18Oct2018) (https://www.ema.europa.eu/en/quality-equivalence-topical-products#current-version-section)
 - * "Generic Development of Topical Dermatologic Products: Formulation Development, Process Development, and Testing of Topical Dermatological Products"

 AAPS J. 2013 Jan; 15(1): 41-52 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535108/)
 - * "Testing Topicals: Analytical Strategies for the In-Vitro Demonstration of Bioequivalence" Pharm Tech Sept 2018 (http://www.pharmtech.com/testing-topicals-analytical-strategies-vitro-demonstration-bioequivalence?pageID=1)

Rheometer Overview

Upper Plate

only moving part contacting sample

- different surfaces
 - -smooth
 - -rough
 - -serrated
- many other attachments

Lower Plate

- does not move
- same surface options as upper plate
- controls temperature (-5 to 200°C)*

Movements → torque

- Rotational (1 direction)
- Oscillational (bi-directional)
- Vertical

^{*}Options to extend temperature ranges are available.

By end of presentation......

- What assay should I use?
- What experimental parameters should I consider?
- Appreciate which is more viscous honey or mayonnaise? What are these? τ , σ , γ , η
- Is silly putty viscoelastic solid or liquid? What are these? G', G", G*, δ , η *, tan delta

SOME BASIC RHEOLOGY ASSAYS ENTRÉES

...many side options available

\Rightarrow ROTATIONAL \rightarrow measure flow

- Shear Rate Ramp (shear thinning)
- Shear Stress Ramp (yield stress, start of flow)
- Thixotropy (rebuilding after shear thinning)
- Time Sweep (stability)
- Temperature Ramp (stability, phase transitions, melting)
- Creep-Recovery (yield stress, rebuilding)
- Tribology (friction, lubricity)

\Rightarrow OSCILLATORY \rightarrow measure deformation

- Amplitude Sweep (LVER, stability)
- Frequency Sweep (viscoelasticity)
- Thixotropy (rebuilding after thinning)
- Time Sweep (stability)
- Temperature Ramp (stability, phase transitions, melting)
- Creep-Recovery (yield stress, rebuilding)

⇒ VERTICAL

- Squeeze-Pull Away (stickiness, model chewing)
- Surface Tension

Rheology is much more than just viscosity!

Viscosity → Resistance to Flow

Rotational - Measure flow (as torque) with applied force & movement

- Most semisolids shear thin (non-Newtonian)
- Helpful to model processes (spreading, pumping, syringability, feel)

Shear rate = strain/time (Strain=displacement/height)

Effect of Shear on Microstructure.. "go with the flow"

- ⇒ Biologicals, polymers, emulsions
- ⇒ Larger & irregular particles tend to increase viscosity
- ⇒ Mixtures having more polydisperse particles tend to have lower viscosity

Shear Rate of Processes - range 10¹⁰ (10 billion)

Shear Rates of Common Processes

Very low shear rates: <0.001s⁻¹ Stability (sedimentation, phase separation)

SAMPLE DELIVERY

Medium shear rates: ~10s⁻¹ Pumpability? Scoopability?

SAMPLE APPLICATION

Low shear rates: ~1s⁻¹
Too thin? Flows off hand?

→ SAMPLE APPLICATION

Higher shear rates: ~100s⁻¹ Too thick to spread? Nice feel?

Calculations: Shear Rate Calculations of Common Processes

#1 Painting


```
Shear rate \gamma = velocity / height
= 0.1m/sec / 0.0002m
= 500sec<sup>-1</sup>
```

Brush velocity = 0.1 m/sec (\approx 4 in/sec) Paint thickness = 200 μ m = 0.0002m (\approx 0.008in)

#2 Flow in capillaries, tube, pipe, syringe & needle - Poiseuille's Law

Many more curve fitting models available

^{*}water is Newtonian

^{**} toothpaste is non-Newtonian

Switching gears ⇒ Rotational Methods

SHEAR STRESS RAMP ASSAY

Analogous to moving revolving door

- Start Applying Force: Initially door does not move
 - \rightarrow Yield Stress: Force required to <u>start</u> moving door (yield point \rightarrow flow)
 - → Yield Viscosity: Viscosity at yield point
- **Note**: Very small initial movement (shear rate) at yield point can give very high yield viscosity.

Application: Yield Stress Ramp "Flow Curve" - Ketchup

▶ Purpose: Client (engineers) needed data for process modelling

- Helpful model for difficult to pump or stir materials → start up force >> maintain flow force due to shear thinning
- Formulation optimization type and amount of thickeners, excipients
- Insight for manufacturing optimization pump capacity, transfer pipe dimensions, temperature
- Refine customer experience thicker, creamier
- Model if sample is likely to settle. Stokes Law → is downward force on particles > media yield stress?

Application: Yield Stress Ramp - Pharmaceutical Paste

- ▶ Purpose: Client needed to quantify impact of % API on processing & application
- ► **Result**: 30% API paste has <u>much</u> higher yield stress & yield viscosity → difficult to initiate movement

Application: Yield Stress Ramp - Arthritis products

- ► Purpose: Client requested side-by-side rheological profiles for 6 products
- ► **Results:** Orders of magnitude difference!
- Experimental: 25mm rough parallel plate, 200um gap (100uL sample), 0 to 300Pa over 300sec
- Note: Yield response is rate dependent. Values vary with experimental parameters. Example: Pull rubber band slow vs fast.

Application: Using Yield Stress to Screen Sedimentation

Downward stress from gravity on a spherical particle in dilute

suspension is estimated by Stokes' Law

$$\begin{array}{c} V_s = 2 \ r^2 * g * \underline{(d-\rho)} \\ \uparrow \\ \text{Sedimentation} \\ \text{velocity} \end{array}$$
 Zero shear viscosity

Vodka with suspended gold flakes (non-Newtonian)

- If sample yield stress > σ_s , then sedimentation less likely <u>assuming</u> <u>suspending media doesn't shear thin</u> during transport and handling.
- Can also determine with <u>amplitude sweep</u> (cohesion energy density).

Ref: azom.com/article.aspx?ArticleID=2885

Switching gears ⇒ Rotational methods

SHEAR RATE RAMP ASSAY

- -Continuous ramp (most requested)
- -Stepwise ramp

```
Viscosity(\eta) = Shear Stress = \sigma

Shear Rate \gamma

= Force/Area

Strain/Time

= Force/Area

(Displacement/Height)/Time
```


Shear Rate Ramp (Continuous)

Which is more viscous – honey or mayonnaise?

Depends on shear rate..... CRITICAL CONSIDERATION WHEN COMPARING VISCOSITIES

```
\rightarrowAt 2sec<sup>-1</sup> \eta_{Mayonnaise} > \eta_{Honey}
```

 \rightarrow At 40sec⁻¹ $\eta_{Honey} > \eta_{Mayonnaise}$

Shear Rate Ramp (Continuous) – Low Viscosity Samples → Sensitivity

- Purpose: Client needed to compare viscosity for 5 aqueous formulations vs water
- ► **Result:** Resolved water stds & 5 <u>very low</u> viscosity samples within 0.5cP range with good reproducibility
- Experimental: 40mm smooth upper parallel plate, 300uL gap (380uL sample) at 25°C over 50-200sec⁻¹

Shear Rate Ramp (Continuous) - 2 RLD vs 2 Generic Ointments

Experimental: Shear rate ramp (0.01-1000sec⁻¹) over 5min at 25°C, 25mm rough upper plate

Conclusion: 0.03% > 0.01% for both RLD and Generic ointments with good reproducibility (n=2)

log-log plot → Samples look reasonably similar

$log-linear plot \rightarrow See reproducible differences at low shear rates!$

(RLD = Reference Listed Drug)

Viscosity - Stepwise Shear Rate Ramp

- Incrementally step shear rates up/down.
- Can define viscosity stabilization criteria (i.e. 5% change/5sec) or timeout (i.e. 30sec) before next step.
- Helpful to model manufacturing processes, quantify post-shear thinning (ir)reversibility (hysteresis).

APPLIED MOVEMENTS

OUTPUT PLOT

(for 3 increments)

Image from Netzsch

Stepwise Shear Rate with Increasing/Decreasing Ramps for 2 Polishes

- Experimental: 25mm rough plate, 300um gap (150uL), $0.01 \rightarrow 200 \rightarrow 0.01 \text{sec}^{-1}$
- 30 seconds hold at each step (10 steps up / 9 steps down)

Results: -Samples thinned with increasing shear rate, then differed extent of rebuilding with decreasing shear.

-After shear thinning, Polish 1 under-rebuilt 0.53-fold & Polish 2 over-rebuilt 1.86-fold vs initial.

24

Application: <u>Stepwise</u> Shear <u>Rate</u> for Arthritis Products

- Move to next step after stability criteria met (5%)
- ► **Purpose:** Client requested side-by-side comparison.
- **▶** Results
 - -Very different among samples.
 - -Increasing vs decreasing shear rate results different showing loss of Newtonian plateau
- Experimental: 25mm rough plate, 200um gap (100uL), 0.0001-1000sec⁻¹

STEP 1 - Increasing Shear Rate

Much reduced
noise at low
shear rates
⇒ sheared-thinned
during Step 1

Application: Stepwise Shear Rate - Rank order macromolecule MW ∝ "zero" shear rate

- ▶ Purpose: Client requested side-by-side rheological profile for several products.
- ➤ Results: Viscosity at Newtonian Plateau correlate with molecular weight (MW).
- \rightarrow General Rule of Thumb: Polymer having same η_0 with broad MW distribution (less ordered) starts shear thinning at lower shear vs narrow MWD (more ordered).
- \rightarrow General Rule of Thumb: Correlation with η^* (complex viscosity) can also determined with low frequency (oscillatory) assay.

G' & G" shift to \downarrow freq with \uparrow MW. \uparrow G'G" crossover frequency $\rightarrow \downarrow$ MW. \uparrow G'G" crossover modulus \rightarrow more narrow MWD....*MORE LATER*.

26

Application: Batch (In)Consistency using Shear Stress & Shear Rate Ramp Assays

Conclusion: Both shear stress ramp & shear rate ramp assays confirm Batch #6 differs.

SHEAR STRESS RAMP

Batches #1-5 → Similar

Batch #6 (triplicate) → Higher yield stress & yield viscosity → more stiff

SHEAR RATE RAMP

Batches #1-5 → Similar

Batch #6 (duplicate) → Higher viscosity at low shear rate (1-10sec⁻¹)

Application: Thixotropy (3-Step) – Ketchup...again

▶ Purpose: Client (engineers) requested ketchup data for process modelling.

Determine rebuild extent and rate after exposure to higher shear (i.e. shear thinning).

→ CAREFUL! Assay parameters, esp Step 2 depend on question seeking to answer.......

Application: Temperature Cycling with Single Shear RATE - Food

- Investigate irreversibility of food product viscosity with temperature cycles 34 → 50 → 34°F
- Used solvent trap to increase humidity in assay chamber to reduce moisture loss
- Sample assayed at low shear rate of 0.1sec⁻¹

Application: Temperature Ramp with Single Shear STRESS - 6 dispersed polymers

- ▶ Purpose: Client requested screen for rheological differences & stability with brief exposure to at 90°C.
- ▶ Result: Batches differed (Fig 2). All appeared to be rheologically stable with brief heating (Fig 3).
- Experimental: 25mm rough parallel plate, 0.2mm gap, 15Pa over $5 \rightarrow 90 \rightarrow 5^{\circ}\text{C}$ (5°C/min)

Creep-Recovery for Yield Stress & Elasticity

Response to applied stress and release

- ⇒ Quantitate net loss of elasticity (fatigue) following stress or strain
- ⇒ Used to determine zero-shear viscosity and evaluate suspension stability

Squeeze/twist and release.

Quantify responses.

Pure Elastic

Most stable Bounces 100% of initial height

Pure Viscous Least stable

No bounce

Viscoelastic

Mix of Viscous & Elastic

Creep-Recovery

Response to applied stress and release

⇒ Quantitate net loss of elasticity following stress

Viscoelastic Material

Squeeze/twist and release. Quantify responses.

Application: Tribology (friction) of 4 common 5W-30 motor oils at 15, 25 & 125°C

▶ Result: Differences among oils decrease with increasing temperature and decreasing shear

 \Rightarrow food and cosmetics applications

Brand 4 (high mileage oil) has lowest friction (CoF) at lower temperatures as ↑shear.

33

Application: Tribology (friction) for arthritis products

- ▶ Purpose: Client wanted to compare friction properties across 6 products
- ▶ Result: Observed \approx 2-fold difference among samples with leading product having least friction (lowest CofF).
- Experimental: 36°C, 0.2N downward force over 0.0001 to 100 radians/sec. Requires ≈300uL sample.

Now that we've looked at some examples, some experimental considerations....

Preliminaries to Ensure & Confirm Rheometer Performance

- Motor Warmup, Torque Mapping, Geometry Inertia
- Performance standards: start & end <u>bracketing</u> water or silicone oil for rotational assays and PDMS for oscillatory assays

For Rotational Assays: Shear Rate Ramp (same used for samples)

- Water for highly aqueous, low viscosity samples
- Certified silicone oil standards for higher viscosity samples

For Oscillatory Assays: Frequency Sweep

PDMS Std

(10→0.1Hz at 25°C, 0.5% strain, 0.5mm gap with 25mm rough plate vs label claim)

Mindful about slippage at plate-sample interface

- Plate must impart force through sample, not just at plate-sample interface
- Slippage leads to experimental error, variability and conclusions
- If sample not prone to slippage, results should be similar with different gaps (i.e. sample height)
- ► Use roughened or serrated plates to reduce potential for slippage

Other Experimental Considerations

- Consistency is critical!
 - -Handling during loading (minimize shear, bubbles, volatiles loss (more later))
 - -Trim to remove excess sample

• Geometry: Cone, Plate or Cup & Bob, vane, many options

- -Cone gives more consistent shear across sample vs parallel plate.
- -Cone <u>not</u> recommended for temperature sweeps if not compensate for thermal expansion.
- -Plate allows flexible and smaller gap to assay with higher shear rate without losing sample. Cone has default gap.

Plate/Cone Size

- -Larger diameter provides more sample contact to provide more torque, hence more sensitivity; but requires more sample.
- -Larger diameter is more sensitive for less viscous samples and achieves smaller strain amplitudes for oscillatory assays.
- -Larger diameter can generate higher shear rate
- -Larger diameter, having more oscillating mass gives "inertia flag" at higher frequency, esp for lower viscosity samples.
- -Smaller diameter better for more viscous and viscoelastic samples. Also uses less sample.
- -Smaller cone angles achieve higher shear rates.

Other Experimental Considerations (continued)

Consistency is critical! ...repeating

Shear rate = strain/time (Strain=displacement/height)

- Gap (sample height)
 - -Typically 0.2-1mm. Depends on sample and assay parameters. (human hair \approx 70+/-20um)
- -Smaller gap requires less sample (100ul for 25mm plate with 200um gap)
- -Smaller gap:
 - -Generates higher shear rate.
 - -Reduces potential to lose sample from gap at high shear rate. Observe stress $\downarrow \downarrow$ with \uparrow shear rate if sample displaced.
- -Small gap inaccuracies may lead to modest % assay error.
- -Larger gap facilitates smaller strain amplitude
- -1/10 rule: plate-plate or plate cone gap \geq 10x largest particle or droplet. Cones have fixed default gaps.
- -Gap setting options to provide consistent sample loading:
 - -height controlled \rightarrow For most samples. Typically 200-1,000um.
 - -<u>force controlled</u> \rightarrow For samples with inconsistent thickness (i.e. cheese), rigid &difficult to compress (polymer films). Rheometer software accounts for sample height throughout assay to calc outputs.
- ⇒Kinexus rheometer tracks both gap height and force for each datapoint throughout assay.

Other Experimental Considerations (continued)

- Pre-Shear or not to pre-shear.....
 - -Depends on question to be answered
 - -Any sample movement (loading) may irreversibly shear thin sample, maybe not!?! Screen with thixotropy assay (later)
 - -Can apply very low pre-shear to "normalize" for handling effects
 - **BUT**... pre-shear can "erase" other rheological properties especially if sample easily shear thins with poor rebuilding.
- Sample change during handling and analysis
 - -Curing, degradation, rebuilding, cross-linking, volatiles loss, etc
 - -Rotational: Screen with <u>single</u> shear rate or shear stress vs time at assay temperature(s) and monitor viscosity
 - -Oscillatory: Screen with <u>single</u> frequency vs time & monitor G', G", δ , G* changes. What are G', G", δ , G*? Stay tuned.....

-Got volatiles? Use a solvent trap

-Maintain sample in enclosed volatiles saturated environment (i.e. humidity)

-Sensitivity to oxidation at elevated temperature → enclosed, low N₂ flow

Switching gears from <u>rotational</u> to <u>oscillatory</u> assays → DEFORMATION

Movements → torque

- Rotational (1 direction)
- Oscillatory (bi-directional)
- Vertical

Oscillation * washing machine agitator...sort of

2 Ways to Modulate Oscillation:

1. Amplitude (destructive)

- Determine Linear Viscoelastic Region (LVER) \Rightarrow "Breaking point" of structure ∞ stability
- Quantify textural properties: stiffness, springiness, structural strength, brittleness

2. Frequency (non-destructive)

- Measure response to event time =1/freq
- -Probe structural properties <u>within LVER</u> to maintain rheological integrity during assay

Image from Netzsch

Oscillation - Amplitude Sweep

- ⇒ Increase amplitude (back-forth movement) until "break" macrostructure
- ⇒ Prelimary assay to determine LVER <u>before</u> perform frequency modulated assays to ensure sample integrity.
- \Rightarrow LVER can decrease with increasing frequency. Typically perform assays at 1Hz.
- ⇒ G' (elastic modulus; solid-nature) tends to increase with increasing frequency
- ⇒ LVER tends to decrease with increasing solid form (i.e. temperature dependence). LVER _{melted} > LVER _{not melted}

Image from Netzsch

Stress controlled: Measure sample movement from defined applied force (stress=F/A). **Strain controlled:** Measure torque required to move sample defined displacement.

Application: Amplitude Sweep: G' vs % strain to determine LVER for gels containing hyaluronic acid

- → strain = extent of sample deformation relative to sample height
- ▶ Purpose: Compare properties. ALSO need LVER from this assay to define %strain (within LVER) input for subsequent frequency sweeps.
- ▶ **Result:** Observed large LVER and G' differences. Determined input %strain for subsequent frequency sweeps.

Note: LVER typically defined as 5% G' decrease. Determined from data tables, <u>not</u> visually from plots.

Quick Check of Shelf Life without Prediction of Timescale!

Long-Range Interactions increase the Cohesion Energy by enlarging the LVR.

Oscillatory Assay Output Summary: G', G'', δ , G*, η * and tan delta

to Quantify Viscoelastic Deformation

- G' (Pascals; Pa): Elastic or "storage" modulus ∞ solid nature
- G" (Pascals; Pa): Viscous or "loss" modulus ∞ liquid nature
- δ (degrees): Phase angle $45^{\circ} \rightarrow 0^{\circ}$ increasingly solid
 - $45^{\circ} \rightarrow 90^{\circ}$ increasingly liquid
- tan δ (unitless): = G"/G' \propto ability to store (solid-like) and release (liquid-like) energy.
 - •With decreasing tan delta, particles increasingly associated due to colloidal forces, sedimentation could occur
 - The lower the frequency of G'G" crossover, the higher the molecular mass.
 - <1 increasingly solid-like; >1 increasingly liquid like; = 1 is G'G" crossover (phase transition, melting pt, gel pt)
 - G* (complex modulus; Pa) = $Stress_{(max)}$ / $Strain_{(max)}$ $\propto Stiffness$
 - η^* (complex viscosity; cP or Pa-sec) = $G^*/2\pi f$ where f= angular frequency that must be units of radians/second

 \Rightarrow Depending on sample properties, it is important to note that " η viscosity" obtained with rotational assays and " η * complex viscosity" determined with oscillatory assays are not necessarily the same value (see references about "Cox-Merz Rule-Netzsch" and "Cox-Merz Rule-TA").

Frequency Sweep: Example Silly Putty → Viscoelastic Liquid or Solid?

- Probe properties across a time domain. Frequency = 1/time (sec)
- Generates rheological "fingerprint" or "spectrum"
- Use % strain as assay input within LVER determined with amplitude sweep

At lower Hz, sample molecular relaxation time is shorter than applied test freq, more liquid-like with $G'' > G' \Rightarrow$ flows.

At higher Hz, sample molecular relaxation is longer than test freq, more solid-like with G' >G" ⇒bounces.

Bounces (solid)

Application: Frequency Sweep - Quantify Texture

Complex modulus (G*) vs Phase Angle (δ) at 1Hz and consistent %strain

Application: Stability - Single Frequency and %Strain for Polymer Discs

- ▶ Purpose: Compare thermal stability of discs vs % anti-oxidant relative to Reference Disc
- ► **Result:** Samples show different G'_(plateau) and stabilization rate
- ► Experimental: Gap discs with 4N downward force, assayed 3hrs at 180°C under N₂ with 1.59Hz at 0.5% strain

Application: Frequency sweep G' 20-0.01Hz, 3% strain* for 6 Arthritis products

- \Rightarrow ID products that stiffen more than others with increasing frequency (∞ exercise) as shown in results
- ► Purpose: Client requested detailed comparison for rheological of 6 products. Assayed in duplicate.
- ▶ Results: Significant differences. Helpful for Q3 (ANDA) pharma, ID counterfeit and adulterated products

^{* 3%} strain obtained from literature and also confirmed with amplitude sweep

Application: FREQUENCY SWEEP – Sensory Screen

Pull-away assay also correlates well with sensory panel results

Yogurt - sensory-rheology

Firmness vs elastic modulus relationship High fat always scores well.....

Note G' here – correlates to panel score....

Dairy Innovation Australia Sensor Analysis Lab

Ranjan Sharma Dairy Australia/NCDEA "Sensory Quality Aspects of Yoghurt" Webinar - 11 July 2013

Image from Malvern Pananalytical/ Netzsch

51

Application: Oscillatory Single Frequency Temperature Sweep - Melting Point of Cheese

• Quantify melting pt with G'G"- crossover and phase angle (δ =45°))

Application: Oscillatory Single Frequency Temperature Sweep - Melting Point of Cheese

Quantify melting pt with phase angle (δ =45°) and Tan delta (G"/G'=1)

REPRODUCIBILITY*		*Values determined
Sample	Melt Point	directly from data files
	°C	<u>not</u> from figures.
CHEESE 1	56.28	
	57.35	
AVG	56.8	
CHEESE 2	60.21	
CHEESE Z	61.41	
AVG	60.8	
CHEESE 3	62.93	
CHLL3L 3	62.69	
AVG	62.8	
	59.39	
CHEESE 4	58.46	Apparent outlier
CITELSE 4	53.95	
	56.96	
AVG	57.2	
CHEESE 5	58.93	
	55.32	
	57.49	
AVG	57.2	53

Application: Oscillatory Single Frequency Temperature Sweep – Butter Spreadability

- Spreadable butter contains fats & oils that melt and more spreadable at lower temperatures.

TEMPERATURE SWEEP TO PROBE THERMAL (IR)REVERSIBILITY

- Can do in either rotational or oscillatory mode
- Probe properties with multiple temperature up/down ramps
- Important for manufacturing and low/high temperature exposure (winter/summer)

Example showing irreversible rheological change to more thermally stable material

Switching gears to vertical assays

- Pull away
- Model chewing
- Surface tension

<u>Movements → torque</u>

- Rotational (1 direction)
- Oscillational (bi-directional)
- Vertical

Squeeze-Pull Away for Several Manufacturing Sources

Model adhesion/cohesion, stickiness, mastication (chewing)

- peak pull-away force (N; Newtons) for tack
- area under the curve (N-sec) for adhesion/cohesion strength

• time (sec) for 90% of force reduction for failure

Tack test method: ASTM D2979

Application: Axial Testing to Quantify Texture with Heating-Chocolate

Chocolate Rheometry Axial Testing Results

 These relative tests allow for a close correlation, under more scientific control, of properties that we "feel" and know

Slide from Netzsch

Application: Squeeze-Pull Away Cycling to Model Chewing

Food Research International 49 (2012) 161-169

Contents lists available at SciVerse ScienceDirect

Food Research International

Instrumental mastication assay for texture assessment of semi-solid foods: Combined cyclic squeezing flow and shear viscometry

Cheryl Chung ^a, Brian Degner ^b, David Julian McClements ^{a,*}

- ^a Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
- ^b ConAgra Foods, Six ConAgra Drive, Omaha, NE 68102, United States

Load sample

Compression

Fixed Gap (with or without shear)

Decompression

Table 1
Chemical composition of artificial saliva (Mandel et al., 2010; Sarkar et al., 2009).

Chemical type	Concentration (g/L) or activity (units/mL)
Sodium chloride	1.594
Ammonium nitrate	0.328
Potassium phosphate	0.636
Potassium chloride	0.202
Potassium citrate	0.308
Uric acid sodium salt	0.021
Urea	0.198
Sodium pt-lactate/lactic acid sodium salt	0.146
Mucin from porcine stomach, type II	30
Alpha amylase activity	93 units/mL

168

C. Chung et al. / Food Research International 49 (2012) 161-169

Application: Interfacial surface tension (liquid-air, liquid-liquid)

- Applications in pharmaceutical, cosmetics, paint, food industries
- Surface Tension (milliNewton/meter) = Δ Force * Ring factor Ring factor is normalized to bracketing water standards 71.99mN/meter for assays at 25°C. Adjust for assays at other temperatures.

Application: Interfacial surface tension (liquid-air, liquid-liquid)

- Applications in pharmaceutical, cosmetics, paint, food industries
- Surface Tension = Δ Force * Ring factor

Ring factor is normalized to bracketing water standards 71.99mN/meter for assays at 25°C. Adjust for assays at other temperatures.

Example Results

Sample Description	# Pulls	Average Surface Tension (milliNewton/meter)	%RSD
HPLC grade water START	12	71.99	5.3
1mg/mL SET 1	6	72.99	4.4
1mg/mL SET 2	6	72.90	3.6
HPLC grade water INTERIM 2	6	71.99	4.6
10mg/mL SET 1	6	63.84	3.4
10mg/mL SET 2	6	63.89	5.1
HPLC grade water END	6	71.99	1.8

Rheology Testing Services

61

CONCLUSIONS

- √ Rheology is <u>much</u> more than viscosity!
- $\sqrt{}$ Many approaches to characterize materials. Depends on the questions to be answered.
- $\sqrt{\text{Viscosity will often decrease with increasing shear rate}} \rightarrow \text{shear thinning (non-Newtonian)}.$
 - → Very important to report viscosity with associated shear rate.
- $\sqrt{\text{Regulatory considerations! Q3}}$
- **√** Numerous experimental considerations

⇒ ROTATION

- Shear stress <u>ramp</u> and <u>stepwise</u>: "Flow curve". Model delivery, performance & processes.
- Shear rate <u>ramp</u> and <u>stepwise</u>: Compare products. Shear thinning profile.
- Thixotropy: Extent & rate of rebuild after shear thinning. Ketchup, paint, toothpaste
- Single shear rate or stress over time: Stability
- Temperature sweep: Change with temperature, model processes
- Creep-Recovery
- Tribology (friction, lubricity): motor oil, arthritis products

⇒OSCILLATORY

- Amplitude sweep: Define LVER ∞ breaking point ∞ rheological stability. Critical input for frequency assays.
- Frequency sweep: Rheological fingerprint across frequency (1/time) domain. Silly putty example. Model arthritis products. Texture.
- Temperature sweep and cycling: Thermal (ir)reversibility, melting point. Cheese melting point, polymer disc examples.

⇒ VERTICAL

- Squeeze Pull Away: stickiness, model chewing, texture
- Surface Tension

Backup Slides

Plate & Cone Considerations

Geometry Size	Advantages	Disadvantages
Larger surface area	-Use for lower viscosity samples	-Requires more sample
Smaller surface area	-Use for higher viscosity samples	-May not provide adequate
	-Requires less sample	response since less sample area

Geometry Surface	Advantages	Disadvantages
Smooth	-Easy to clean	-May give slippage
Roughened	-Easy to clean	-May still give slippage
	-May reduce potential for slippage	
Serrated	-Most aggressive to reduce	-May need brush to clean
	slippage	-May "gouge" sample surface

Geometry Type	Advantages	Disadvantages
Flat (parallel)	-Good for high viscosity fluids	-Variable shear rate across radius. Sample may yield at edge before center.
Cone (2 & 4°)	-Good for low viscosity fluids -Constant shear rate in gap	Don't use for temperature sweeps unless rheometer compensates for thermal expansion

Optimizing Dispersion, Colloidal and Emulsion Stability

(dispersed phase <1mm)

Property	To Improve Stability	How
Zero Shear Viscosity (η_0)	↑	Add thickeners to prevent particles from settling
Yield Stress	\uparrow	Provides high resistance to sedimentation.
Thixotropy	\downarrow	Decrease rebuild time to near pre-shear value
Cohesive Energy	↑	Determine with strain controlled amplitude sweep (CE=1/2G' x γ^2)
Viscoelasticity	↓δ	-Viscoelastic liquids with high phase angle (δ) at low freq are less stable -Use structured gel having δ <45° and independent of freq -If heavy or large particles, decrease δ <45° at low freq

- Larger particles increase viscosity
- Irregular particles increase viscosity

https://www.azom.com/article.aspx?ArticleID=11442

Shear Rate Ramp: Low viscosity formulations with high shear rate

• Experimental: 40mm smooth parallel plate, 100uL gap* (130uL sample), 25°C, 0.1-60,000sec-1 over 5min

^{*} Small gap (100um) is required to retain sample within plates at high shear. Human hair is 70+/-20um.

Is Silly Putty a viscoelastic solid or liquid at rest?

phase angle starts >45°

⇒ liquid dominant

PROCESSING OF A PROTEIN-STABILIZIZED EMULSION

Influence of Processing Variables on Rheological & Textural Properties of Lupin

Protein-Stabilized Emulsions

J. M. Franco, A. Raymundo, I. Sousa, and C. Gallegos J. Agric. Food Chem. 1998, 46, 3109–3115

PURPOSE

- •Mayonnaise and salad dressing-type emulsions are stabilized by an adsorbed layer of protein at the oil-water interface.
- •Previous studies show poorer gelation and thickening properties of lupin protein compared to commercially used soy protein.

EXPERIMENTAL (rheology only)

- •Steady-state flow curves (rotational): Serrated plate (20 mm) to prevent wall-slip.
- •Frequency Sweep (oscillational): Within LVER, using a cone/plate (35 mm, 2°) across 0.05-200 rad/s (0.01-31.8Hz).

CONCLUSION:

- Emulsion stability and physical properties improved by heating lupin solution prior to the addition of the oil phase or inducing a chemical or enzymatic reaction that increases the entanglement protein molecules along with hydrophobicity.
- •Processing variables (temp, time, impeller/stir type & speed) affect viscous and viscoelastic behavior by droplet size distribution, interdroplet interactions and entanglement.

PROCESSING OF A PROTEIN-STABILIZIZED EMULSION

Influence of Processing Variables on Rheological & Textural Properties of Lupin Protein-Stabilized Emulsions

Freq Sweep: G' and G" of lupin proteinstabilized emulsions vs agitation speeds.

Freq Sweep: G' and G" for lupin protein-stabilized emulsions prepared vs emulsification times

PROCESSING OF A PROTEIN-STABILIZIZED EMULSION (con't)

J. M. Franco, A. Raymundo, I. Sousa, and C. Gallegos

J. Agric. Food Chem. 1998, 46, 3109-3115

6.5min process time vs agitation speed

- → Higher speed, more viscous
- →All shear thin, with 20,500rpm more rapidly
- →Generally, similar breakpoint

Agitation speed (14,250rpm) vs time

- →Longer time, more viscous
- →Shorter time, later breakpoint

Steady-state flow curves: (a) agitation speed and (b) emulsification time for lupin protein stabilized emulsions.